

Providing Evidence-Based Livestock Solutions

DAIRY ANTIMICROBIAL FOCUS

Annual Report 2025

IN THIS REPORT:

- ANTIMICROBIAL TRENDS OVER 7 YEARS
- HERD LEVEL COMPARISONS
- ANTIMICROBIAL CLASS ANALYSIS
- DRY COW THERAPY
- PRODUCTS OVERVIEW
- REGIONAL TRENDS

WELCOME

Welcome to the fifth edition of the Kingshay Antimicrobial Focus Report which provides an annual summary of the antimicrobial purchasing trends from dairy herds across the UK.

This edition of the report highlights the achievements of dairy herds in the UK as a result of engaging with the principles of antimicrobial stewardship. Total antimicrobial usage has been further reduced again this year, along with reduced use of higher-level antimicrobials in favour of those less critical to human health.

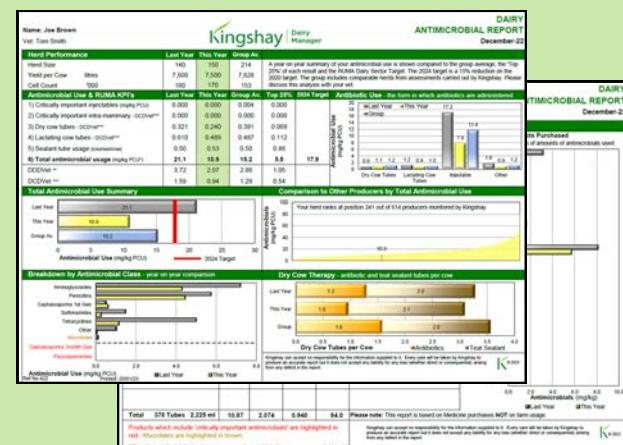
The figures in this report are a testament to the efforts of farmers and vets in a widely varied industry, made up of independent business owners, different sized teams and on vastly differing sites. It is precisely this heterogeneity that makes national antimicrobial reporting such a herculean effort, and Kingshay are proud to be a route for farmers to submit their anonymised data to AHDB's Medicine Hub, in order for the dairy sector to demonstrate its commitment to the safeguarding of antimicrobials.

New RUMA targets have been set, including around reducing reliance on oral medications used to treat groups of calves. The sector has already begun stepping up to achieve these targets, and the support of the GB Calf Strategy, the increasing use of anti-inflammatories, development of new calf vaccines, and use of calf assessment tools such as the Wisconsin calf scoring chart, will surely continue to drive progress in meeting these goals.

*Report co-authors Emma Puddy,
Christina Boobyer and Michael Head*

Providing Evidence-Based Livestock Solutions

CONTENTS


Summary	3
Trends Over 7 Years	4-7
Herd Level Trends	8
Herd Changes Year on Year	9
AHDB Medicine Hub	10
Dry Cow Therapy	11
Products Overview	12
Regional Trends	13
Appendix	14
Glossary	15
Meet the Team	15

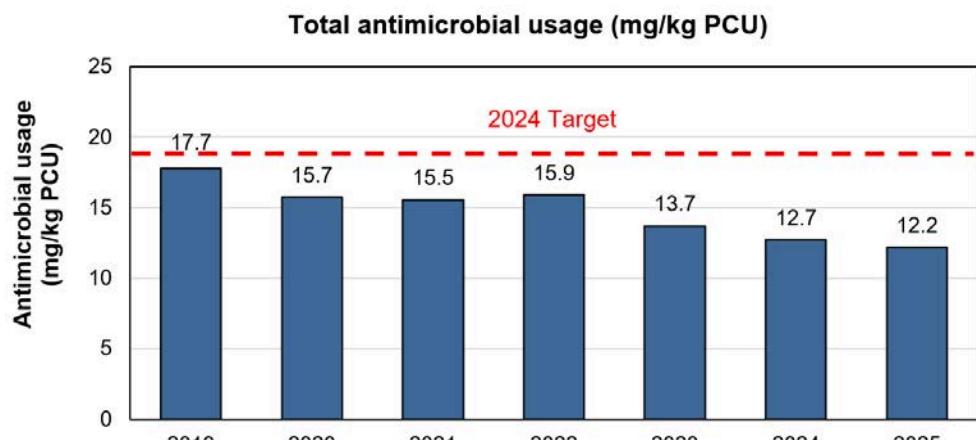
ANTIMICROBIAL DATA COLLECTION METHODOLOGY

Livestock numbers were collected from each producer and the antimicrobial purchases were collected from the vet practice. A set of validated reports were then created and sent out to the producer and vet to check all products were included and validate the accuracy of the report content. Any products that were not used during the period were adjusted, as well as excluding products used on other livestock, such as beef or sheep.

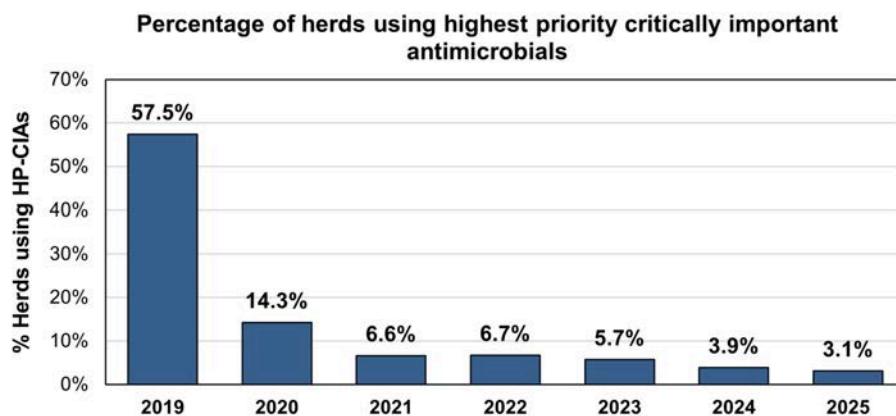
REPORTING THE RESULTS

All producers and vets received a summary report for their individual herd(s) benchmarked against other producers for the same period and also the previous year. Example reports are shown in the Appendix.

To find out more about our
Antimicrobial Monitoring Service
and other services that Kingshay offer,
visit www.kingshay.com


SUMMARY

For the period ending March 2025, a total of 967 herds were included in this dataset.


2025 saw yet another reduction in average total antimicrobial usage in the dairy herds in our dataset, the third consecutive annual reduction since 2022 (Figure 1).

The slowing of this reduction leads some to question how much more reduction the dairy industry can achieve. The Herd Changes Year on Year section (page 9) shows a pattern not of gradual reduction within each herd, but instead of jumps from one year to another as disease challenge varies.

If the dairy industry is to continue on its goal of continued reduction of use of antimicrobials, the most effective reductions on individual farms will be made by changes in infrastructure and management, which will make real difference to prevent health issues in their animals. Some of these could take significant financial investment, whether that is new buildings, vaccination, technology, or genetic improvement to increase disease resistance, but the payback will not just be in reducing antimicrobial use, but in better animal health and therefore production, increasingly resilient businesses and more satisfied staff.

Figure 1 - Antimicrobial use trends over 7 years

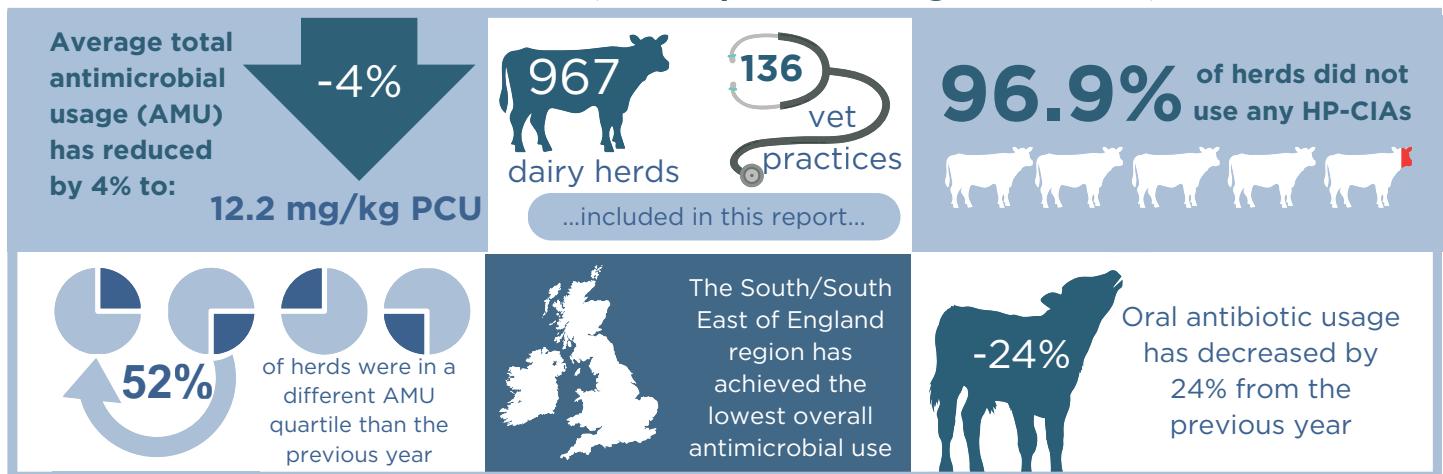


Figure 2 - Percentage of herds using highest priority critically important antimicrobials over 7 years

Antimicrobial stewardship does not just involve aiming to reduce use, but also to move away from using antimicrobials of higher importance to human health, and by this measure the dairy industry seems to be playing its part: record lows for the proportions of herds using the highest priority critically important antimicrobials (HP-CIAs). An increasing proportion of the lowest priority antimicrobials are in the top 10 products list (page 12) and the lowest level of HP-CIA

usage in injectable products and intramammary products since we started our monitoring service.

KEY REPORT TRENDS (for the period ending March 2025)

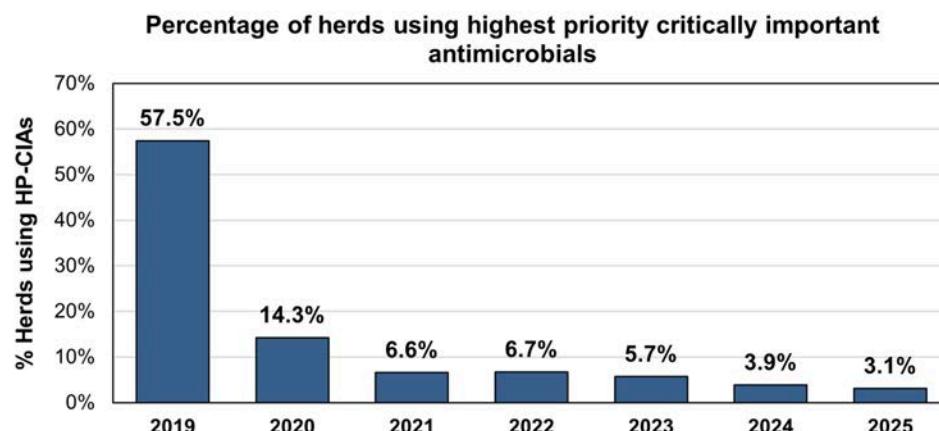
TRENDS OVER 7 YEARS

PERFORMANCE COMPARED TO RUMA TARGETS

The average total antimicrobial usage has reduced again in 2025 to 12.2mg/kg PCU, giving a reduction of 31% in 7 years. Average antimicrobial usage has been below the 2024 target of 17.9mg/kg PCU for all of the last 7 years. This target was calculated based on a 15% reduction of the 2020 RUMA (Responsible Use of Medicines in Agriculture Alliance) target of 21mg/kg PCU.

Use of highest priority critically important antimicrobials (HP-CIAs) has seen staggering reductions over 7 years, with mg/kg PCU of HP-CIA injectable products seeing a 98.3% reduction in 7 years, and HP-CIA intramammary products seeing a 99.8% reduction over the same period. The latest RUMA TTF3 targets include a reduction in cattle HP-CIA injectable products from the previous year, and maintaining intramammary HP-CIA use below a baseline of 0.01 DCDvet (3-year rolling average), and both of these targets have been achieved.

Current RUMA targets for both lactating cow and dry cow tubes are an annual reduction of the 3-year rolling averages. Lactating cow tube usage has reduced every year in our dataset, now down 41% since 2019, and therefore has achieved the target. Dry cow tube usage has seen its first uptick since 2019, seeing an increase of 2% since 2024. Despite this increase, the target has still been achieved.


A new RUMA target is to reduce use of calf oral antibiotics by 10% on the previous year. This has been achieved this year, with a reduction of 24% since 2024. The trend in oral antibiotic use from our dataset, however, does not see a sustained pattern of reduction year on year, with around half of the years seeing an increase. Since 2019 there has been an overall decrease of 27%, with the biggest drop seen between 2024-2025.

Antimicrobial Use (March year end)	2019	2020	2021	2022	2023	2024	2025
1) HP-Critically important injectables (mg/kg PCU)	0.301	0.039	0.017	0.014	0.013	0.007	0.005
2) HP-Critically important intra-mammary (DCDVet)	0.0758	0.0093	0.0079	0.0026	0.0016	0.0029	0.0002
3) Dry cow tubes (DCDVet)	0.512	0.484	0.471	0.454	0.451	0.425	0.435
4) Lactating cow tubes (DCDVet)	0.596	0.558	0.491	0.471	0.430	0.386	0.352
5) Orally administered products (mg/kg PCU)	1.43	1.40	1.22	1.41	1.29	1.38	1.05
6) Total antimicrobial usage (mg/kg PCU)	17.7	15.7	15.5	15.9	13.7	12.7	12.2

Table 1 - Total antimicrobial usage over 7 years (including 5 key areas)

HIGHEST PRIORITY CRITICALLY IMPORTANT ANTIMICROBIALS (HP-CIAs)

Figure 3 below shows the huge reduction in the proportion of herds using any of the highest priority critically important antimicrobials (HP-CIAs). Only 7 years ago, it was common practice to be making use of HP-CIAs on dairy farms, with more than half of herds using these products in 2019. In 2025 this was down to just 3.1% of herds, showing the rapid uptake of guidance to move away from these products to safeguard human and animal health.

Figure 3 - Percentage of herds using highest priority critically important antimicrobials over 7 years

TRENDS OVER 7 YEARS

ANTIMICROBIAL ADMINISTRATION

When split out by administration route, antimicrobial usage trends differ.

The most frequently used products have always been the injectable preparations, and these continue to dominate in terms of mg/kg PCU. Their usage has been stepping down every year, although the drop in the most recent year is the smallest decrease yet.

Lactating cow tube usage was down slightly from the previous year, but dry cow tubes usage increased back to the same level of 2022 at 1.20mg/kg PCU.

Antimicrobials that fall into the 'Other' category include intrauterine products and topical products. These have seen a fall of 11% since the previous year, from 0.63mg/kg PCU to 0.56mg/kg PCU.

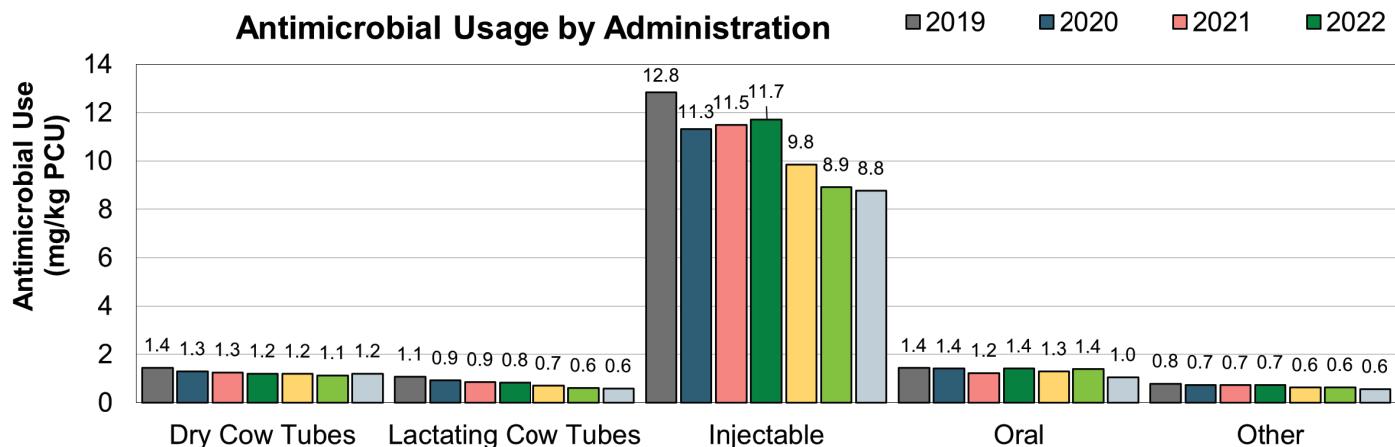


Figure 4 - Trends in antimicrobial administration over the last 5 years

Orally administered products have seen the biggest relative drop from 2024 to 2025, with a decrease of 24%. These products are typically used to manage disease flare-ups in calves, such as respiratory infections, so this reduction suggests improved disease prevention and herd health management. Lower reliance on oral treatments is also positive from an antimicrobial resistance perspective, as these products carry a higher associated risk of resistance developing.

From February 2025, Red Tractor Farm Assurance standards made prophylactic use of antibiotics prohibited except under exceptional circumstances, and requiring the justification to be documented. This could be contributing to this positive trend, as well as initiatives like GB Calf Strategy and ongoing support from vets.

The UK's leading independent dairy costings service

Download our FREE Dairy Costings Focus Report

Four service levels to choose from, enabling you to track:

- Dairy herd performance & feed efficiency
- Antimicrobial usage
- Herd health & fertility status
- Costs of production

01458 851555 dairy.manager@kingshay.co.uk www.kingshay.com

TRENDS OVER 7 YEARS

EUROPEAN MEDICINES AGENCY (EMA) CLASSIFICATION

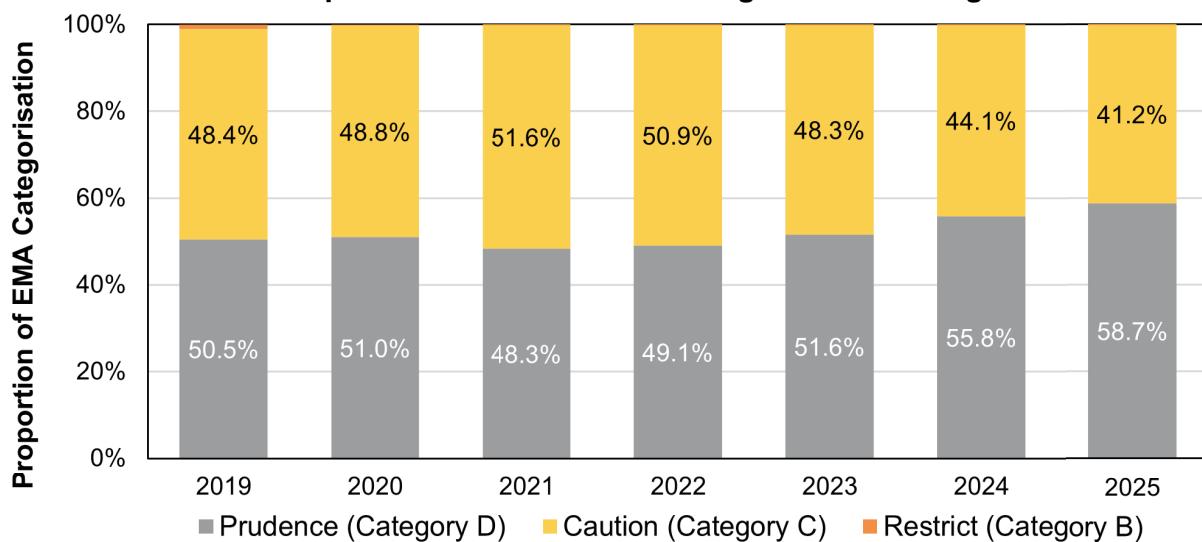
AVOID (Category A)

- Antibiotics in this category are not authorised as veterinary medicines in the EU
- Should not be used in food-producing animals
- May be given to companion animals under exceptional circumstances

RESTRICT (Category B)

- Antibiotics in this category are critically important in human medicine and use in animals should be restricted to mitigate the risk to public health
- Should be considered only when there are no antibiotics in Categories C or D that could be clinically effective
- Use should be based on antimicrobial susceptibility testing, wherever possible

CAUTION (Category C)


- For antibiotics in this category there are alternatives in human medicine
- For some veterinary indications, there are no alternatives belonging to Category D
- Should be considered only when there are no antibiotics in Category D that could be clinically effective

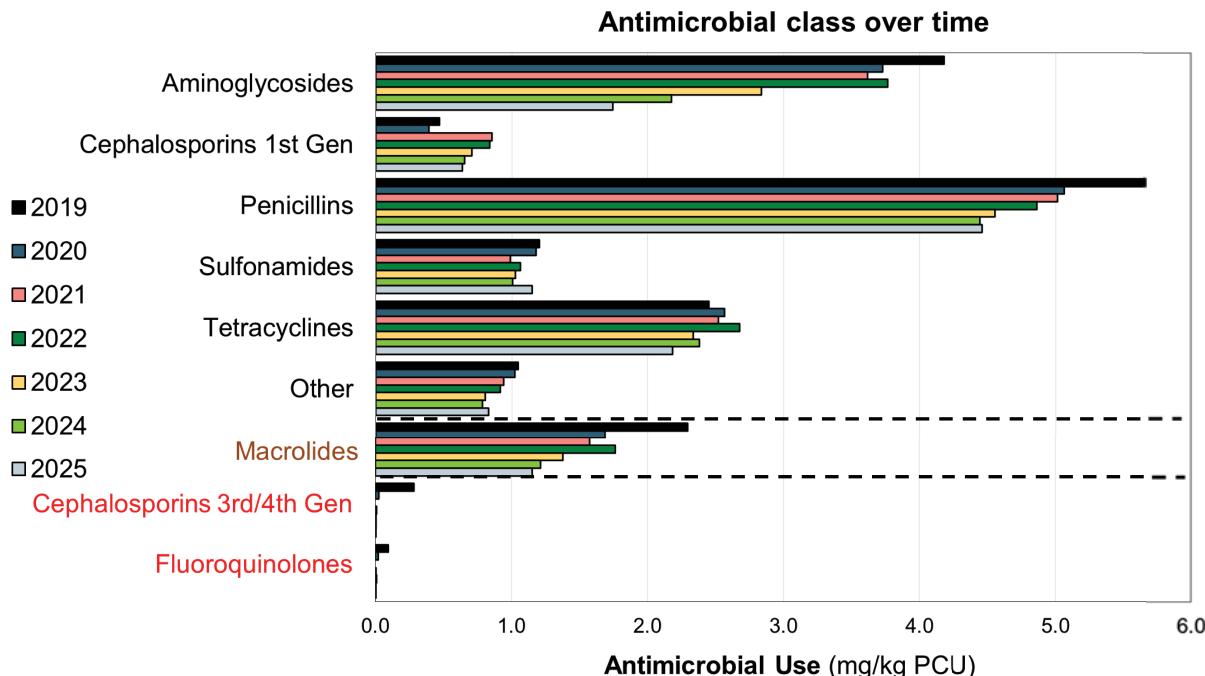
PRUDENCE (Category D)

- Should be used as first line treatments, whenever possible
- As always, should be used prudently, only when medically needed

Figure 5 - EMA definitions

Proportion of antimicrobial categorisation change over time

Figure 6 - Proportion of antimicrobial use by EMA classification over the last 7 years


From 2019 through to 2025, Figure 6 shows a gradual evolution in antimicrobial prescribing patterns, aligned with stewardship principles. Caution (Category C) and Restrict (Category B) antimicrobials have declined over time, allowing a greater proportion of Prudence (Category D) products. This may have been accelerated in the past 2 years by the unavailability of a Category C combination medicine containing penicillin and streptomycin, prompting the switch to Category D alternatives.

The most dramatic reduction is seen in Restrict (Category B) antimicrobials, which fell from 1.10% in 2019 to an almost negligible 0.04% by 2025. These critically important drugs are reserved for exceptional circumstances, and their near elimination from routine use is a strong indicator of successful stewardship interventions. Preserving these medicines for human health is a global priority, and this trend demonstrates that policy and practice are aligned with that goal.

TRENDS OVER 7 YEARS

ANTIMICROBIAL CLASS

Figure 7 - Antimicrobial use over 7 years by antimicrobial class

Changes in use of antimicrobial drugs of the differing classes provides a varied picture. The use of highest priority critically important antimicrobials (HP-CIAs) has seen the most dramatic reduction since 2019, with use of third and fourth generation cephalosporins dropping by 99.4% in 7 years when measured in mg/kg PCU, and fluoroquinolones having reduced by 99.3% in the same timeframe. Fluoroquinolones have seen an uptick in the last year, going from 0.002mg/kg PCU in 2024 to 0.004mg/kg in 2025, but these are still very low levels of use.

The only antimicrobial class where usage was higher in 2025 compared to 2019 is the first generation cephalosporins, up 36.6% to 0.64mg/kg PCU in 2025. Usage of these drugs peaked in 2021 and has been falling every year since.

Aminoglycosides have seen a large reduction in use over time, with a reduction of 58.2% since 2019, with significant drops every year since 2022. The largest drops have been in the last 3 years, which may be at least partially explained by the lack of availability of a combination product containing penicillin and streptomycin. These are often replaced by amoxicillin products for conditions such as mastitis and calf scours, and indeed the graph shows in those same 3 years reduction of usage of penicillin products has slowed compared to preceding years. In fact, 2025 has seen the first increase in use of the penicillins in 7 years. Use of sulfonamides has increased more substantially since the previous year to 1.15mg/kg PCU, returning to near 2020's usage level of 1.18mg/kg PCU.

Kingshay | Membership

Become a Kingshay member and unlock exclusive benefits and discounts.

Stay...

Up to Date

Profitable

Connected

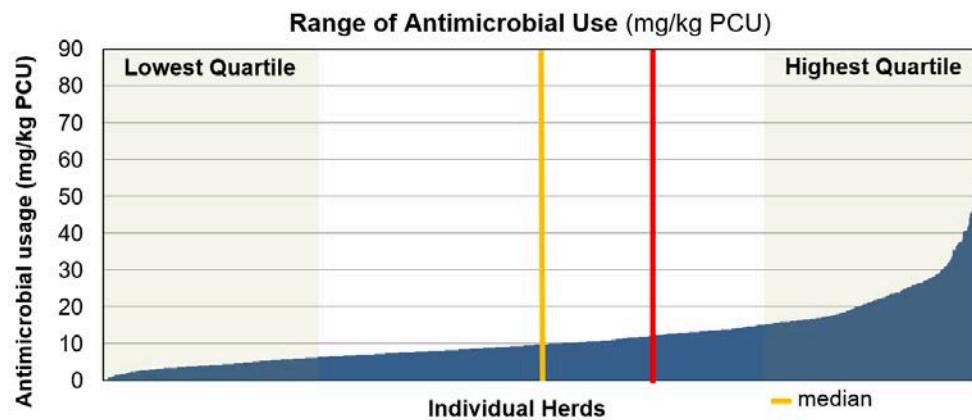
Informed

Supported

Find the membership package that's perfect for you...

Farmer Membership

Vet Membership


University & College Membership

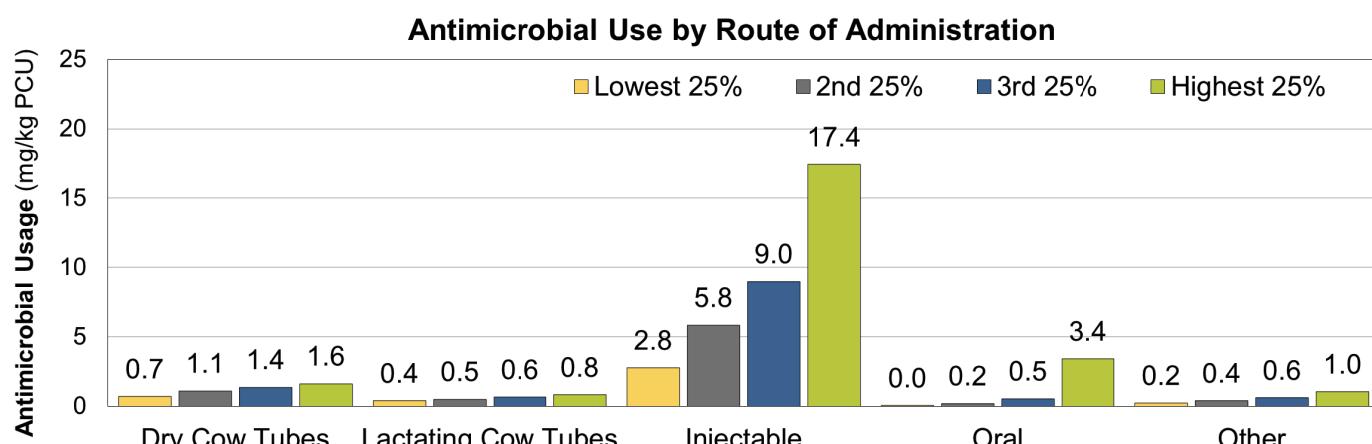
Associate Consultant Membership

Corporate Membership

Visit our website, www.kingshay.com, for a full list of benefits on all levels, or call our friendly team on **01458 851555**.

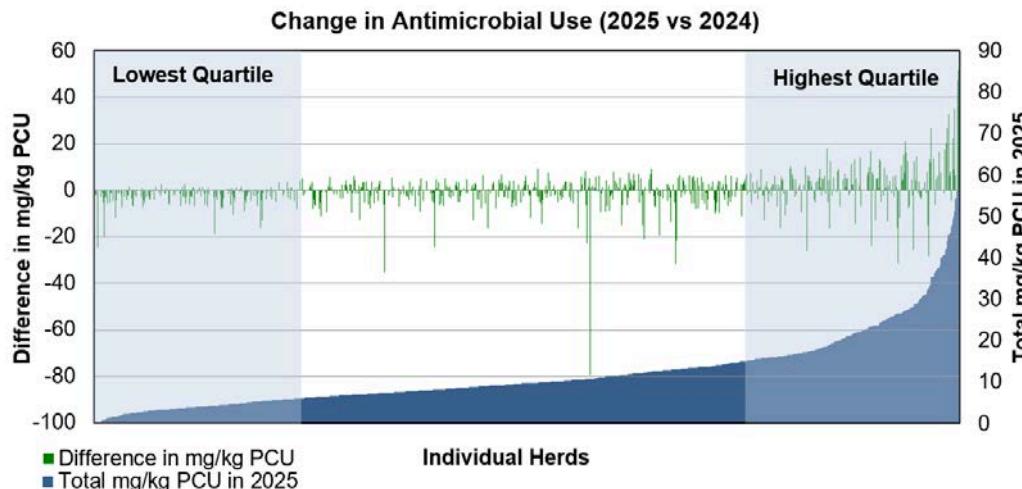
HERD LEVEL TRENDS

Figure 8 - Range of total antimicrobial use by individual herd with mean and median average herd positions (year ending March 2025)


Table 2 shows some key figures for the four quartiles of herds ordered by antimicrobial usage. The only users of intramammary tubes containing highest-priority critically important antimicrobials (HP-CIAs) were in the highest quartile, a departure from last year where the top 3 quartiles all had some herds using these products. Interestingly, the second lowest quartile had the highest average use of HP-CIA injectable products.

Antimicrobial Use by Quartile (mg/kg PCU)	Lowest 25%	2nd 25%	3rd 25%	Highest 25%
1) Critically important injectables (mg/kg PCU)	0.0018	0.0067	0.0057	0.0057
2) Critically important intra-mammary (DCDVet)	0.0000	0.0000	0.0000	0.0007
3) Dry cow tubes (DCDVet)	0.314	0.408	0.472	0.522
4) Lactating cow tubes (DCDVet)	0.264	0.310	0.371	0.450
5) Sealant tube usage (courses/cow)	0.408	0.422	0.419	0.517
6) Total antimicrobial usage (mg/kg PCU)	4.1	8.1	12.2	24.3

Table 2 - Quartile analysis of antimicrobial usage (year ending March 2025)


QUARTILE ANALYSIS BY ROUTE OF ADMINISTRATION

Although the use of oral products for the group has decreased overall, they are over-represented in the highest quartile herds' usage. In quartile 1 (the lowest 25% of users), oral products made up just 1% of their total usage, in quartiles 2 and 3 oral products were 2% and 4% respectively, but in the highest quartile of users, quartile 4, oral products made up 13% of total usage. Although we do not have treatment records, this pattern suggests calf disease is a major contributor to herds spending the year in the top quartile.

Figure 9 - Antimicrobial administration by quartile (year ending March 2025).

HERD CHANGES YEAR ON YEAR

Figure 10 - Change in antimicrobial use (2025 vs 2024)

Table 3 breaks these within-herd changes down further. In all but the highest quartile, on average herds have decreased their usage from the year before. The biggest increase was seen in a herd in the highest quartile, which saw an increase of 51.9mg/kg PCU in 2025, an increase of 168% compared to that herd's usage last year. The biggest decrease was seen in a herd in quartile 3, with a decrease of 79.6mg/kg PCU, a decrease of 88% from 2024. 52% of herds with data for the most recent two years had antimicrobial usage within a different quartile in 2025 than their usage in 2024. This is a consistent trend, increasing slightly from 49% of herds in 2023 and 50% in 2024, so variability is increasing as time goes on.

Changes Year on Year by Quartile (mg/kg PCU)	Lowest 25%	2nd 25%	3rd 25%	Highest 25%
Average change on last year	-2.54	-1.16	-1.40	3.09
Min change	-24.7	-35.3	-79.6	-31.4
Max change	5.2	7.1	9.4	51.9

Table 3 - Changes year on year in antimicrobial use by quartile (2025 vs 2024)

Are you fed up of playing the TB lottery?

FREE

TB ADVICE

Free
Over-the-phone
Advice

Free Farm
Visits

Badger Sett
Surveys

Personalised
Recommendations

Experienced advisers are available to give bespoke TB biosecurity advice by telephone or during two on-farm visits, to discuss how to reduce the risk and impact that bovine TB could have on your farm.

TBAS is an entirely vet-led advisory service, funded by Defra for farmers of all TB susceptible species in England.

To find out more, please contact us:

E info@tbas.org.uk

T 01306 779410

W tbas.org.uk

S

What is Medicine Hub?

Medicine Hub is an online tool developed and managed by AHDB on behalf of, and at the request of, industry to collate antibiotic usage data across the UK for dairy, beef, and sheep enterprises.

Medicine Hub is supported by organisations including the NFU, Veterinary Medicines Directorate, NBA, RABDF, DairyUK, and BCVA. It also has support from farm assurance schemes, processors, and retailers all of whom support the ruminant sector's hard work around the responsible use of antimicrobials.

In 2025, data representing over 50% of the GB milking herd's antibiotic usage data for 2024 was shared and uploaded to Medicine Hub; this is great progress and reflects collaboration and efforts all round. This will be reflected in the 2025 VARSS and RUMA Targets Task Force reports. In 2026, the target is higher so planning ahead now to reach it is important.

Why does the ruminant sector need to collect, report, and collate antibiotic usage data?

The threat of antimicrobial resistance is real, with potentially serious consequences for human health. Livestock farming must play its role to ensure responsible antibiotic use, while continuing to protect animal health.

In EU nations, it is now a legal requirement to record and report antibiotic use with legal penalties and fines being imposed should producers fail to do so. The UK cannot afford to fall behind as there could be consequences for trading negotiations as well as reputation.

Providing data to Medicine Hub is important because it will:

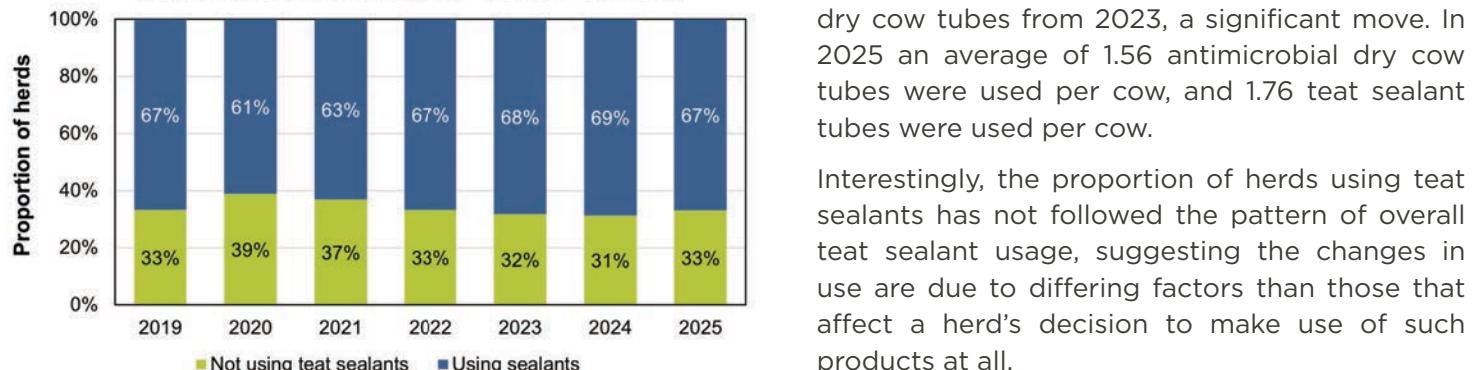
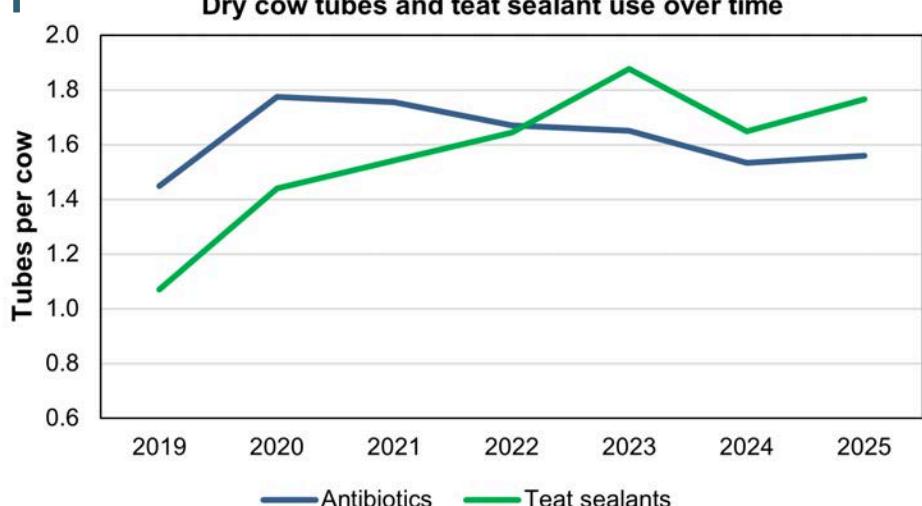
- Protect the **reputation** of the dairy sector as responsible users of antibiotics to customers and consumers.
- Avoid **legislation** being forced on the industry by Government.
- **Preserve access** to the antibiotics currently available.
- Avoid antibiotics becoming a non-tariff **barrier to trade**.

How secure is a producer's data?

Medicine Hub will report only an aggregated figure for antibiotic use for each of dairy, beef, and lamb to the VMD and RUMA.

How data is collected and collated

Data collectors including Kingshay provide detailed farm reports to farmers and vets, alongside aggregated group analysis to clients. With appropriate permissions, anonymised individual farm data can be seamlessly uploaded to Medicine Hub, supporting this important initiative which provides evidence of the UK ruminant sector's responsible approach to antibiotic use.



DRY COW THERAPY

One of the dairy industry's strategies to reduce overall antimicrobial usage has been the widespread adoption of selective dry cow therapy, moving away from blanket prophylaxis to more targeted use of antimicrobial medicines.

Figure 11 shows the use of antibiotic dry cow intramammary tubes has been on a generally declining trajectory since 2020, with the first increase seen in the last year.

At the same time, use of teat sealants, which can be used with or instead of antimicrobial dry cow tubes, saw a bold increase from 2019 to 2023, with a tipping point coming in 2022 where the levels of usage of the two types of product were near equal, after which more teat sealants were used than antimicrobial dry cow tubes from 2023, a significant move. In 2025 an average of 1.56 antimicrobial dry cow tubes were used per cow, and 1.76 teat sealant tubes were used per cow.

Figure 11 - Use of antimicrobial dry cow tubes and teat sealant over time

Figure 12 - Proportion of herds using teat sealants over time

Are you Red Tractor Compliant?

Sign up and complete our no.1 selling online course at

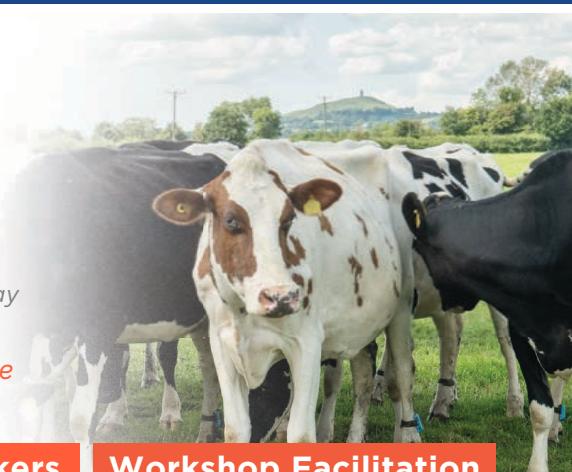
[FarmIQ.co.uk](https://www.farmiq.co.uk)

The Responsible Use of Medicines (Red Tractor Approved)

 Introduction to Antimicrobial Resistance

 Responsible Medicine Use

 Benchmarking Medicine Use


Practical Agricultural Training

Kingshay offers a wide range of training to suit everyone, addressing all areas of your business. Our network of trainers have extensive experience of delivering training to audiences across the UK.

- **DIY AI (DEFRA Approved)**
Full 3 day courses and 1 day refresher courses available
- **Administering Medicines (Red Tractor Approved)**
- **Emergency Foot First Aid**

- **Refreshing Essential Instructional Techniques (Lantra Approved)** - 1 and 2 day courses available

Plus many more including bespoke training for you and your team.

Online

Face to Face Workshops

Technical Speakers

Workshop Facilitation

Get in touch to explore how we can tailor our services for you.

Find out more at www.kingshay.com Email: training@kingshay.co.uk Phone: 01458 851555

PRODUCTS OVERVIEW

The data presented in this report is based on antimicrobial sales data only and not on farm usage records. As such we do not have access to information on what diseases/conditions the products are being utilised for. Table 4 shows the top 10 products by total weight of antimicrobial medicine.

	Product Name	Product Application Method	Antimicrobial Class	No. of Herds using Product	Total Usage (mg)
1	Betamox	Injectable	Penicillin	690	132,051,000
2	Pen & Strep	Injectable	Aminoglycoside, Penicillin	437	85,787,702
3	Norodine 24	Injectable	Anisole, Sulfonamide	345	81,921,960
4	Synulox RTU	Injectable	Penicillin	610	69,019,479
5	Diatrim	Injectable	Anisole, Sulphonamide	368	55,661,724
6	Pharmasin Inj	Injectable	Macrolide	289	52,674,200
7	Alamycin LA 300	Injectable	Tetracycline	209	48,585,000
8	Alamycin LA 200	Injectable	Tetracycline	306	42,205,500
9	Pentomycin	Injectable	Aminoglycoside, Penicillins	254	41,027,554
10	Engemycin 10%	Injectable	Tetracycline	440	39,957,020

Table 4 - Top 10 products used ordered by total active ingredient volume (mg)

This year there is a notable absence of orally administered products from the top 10 list. Last year two orally administered products, Chloromed and Parofor powder, contributed significant usage in terms of weight sold, despite being used by a small number of herds. This year the top 10 products sold to farms are all injectable products, and the total usage milligrams recorded are substantially lower per product. Oral products are generally used for bacterial disease outbreaks in calves, so this hopefully reflects the industry's commitment to treat youngstock management as an area for increasing attention to detail. That being said, there is one product in the top 10 which on dairy farms can only be used for youngstock, which is Pharmasin injectable, still contributing a significant amount of usage to the total, and being a macrolide is a Category C antimicrobial.

Pen & Strep has been knocked off the top spot to second place, possibly due to problems with availability, and another product with the same active ingredients, Pentomycin, has entered the top 10 for the first time.

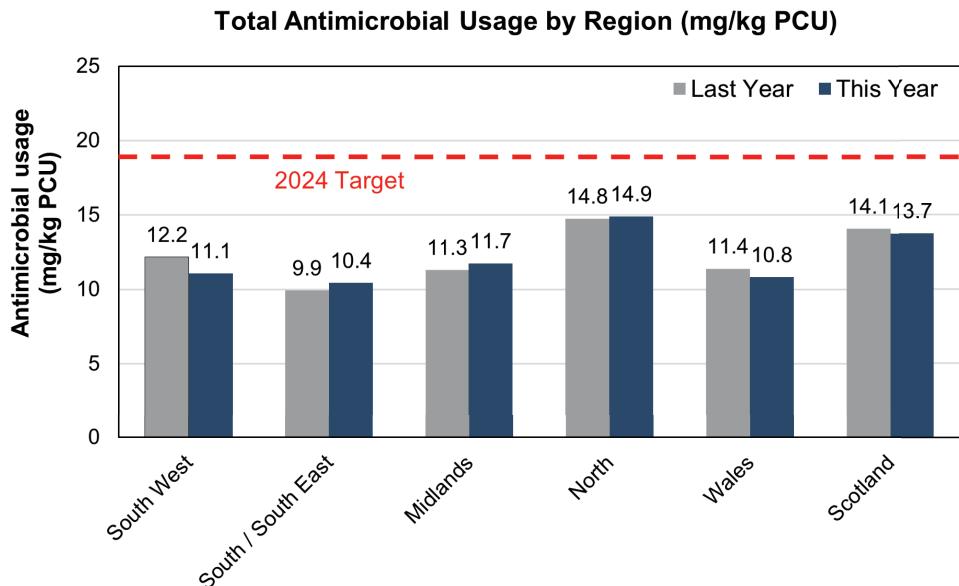
Tylan 200, a macrolide (Category C) has fallen out of the top 10 List as it is no longer available, and Pharmasin, a product with the same active ingredient (tylosin) has climbed from number 8 to number 6. Norodine 24, a Category D injectable antimicrobial, has made it onto the top 10 for the first time and has gone straight to number 3, with Diatrim, which has the same active ingredients, at fifth place.

Kingshay
— Consultancy —

Providing a fresh set of eyes to bring clarity to your farming business

- Youngstock
- Animal Health
- Livestock Nutrition
- Sustainability
- Budgeting & Grants
- Business Management

Get in touch to find out how we can provide unique solutions for your farm.


01458 851555 www.kingshay.com/consultancy consultancy@kingshay.co.uk

REGIONAL TRENDS

There is a surprising range in average total antimicrobial usage when comparing regions.

The South West of England has achieved the largest drop in antimicrobial usage from the previous year, with a decrease of 1.1mg/kg PCU, or 9%.

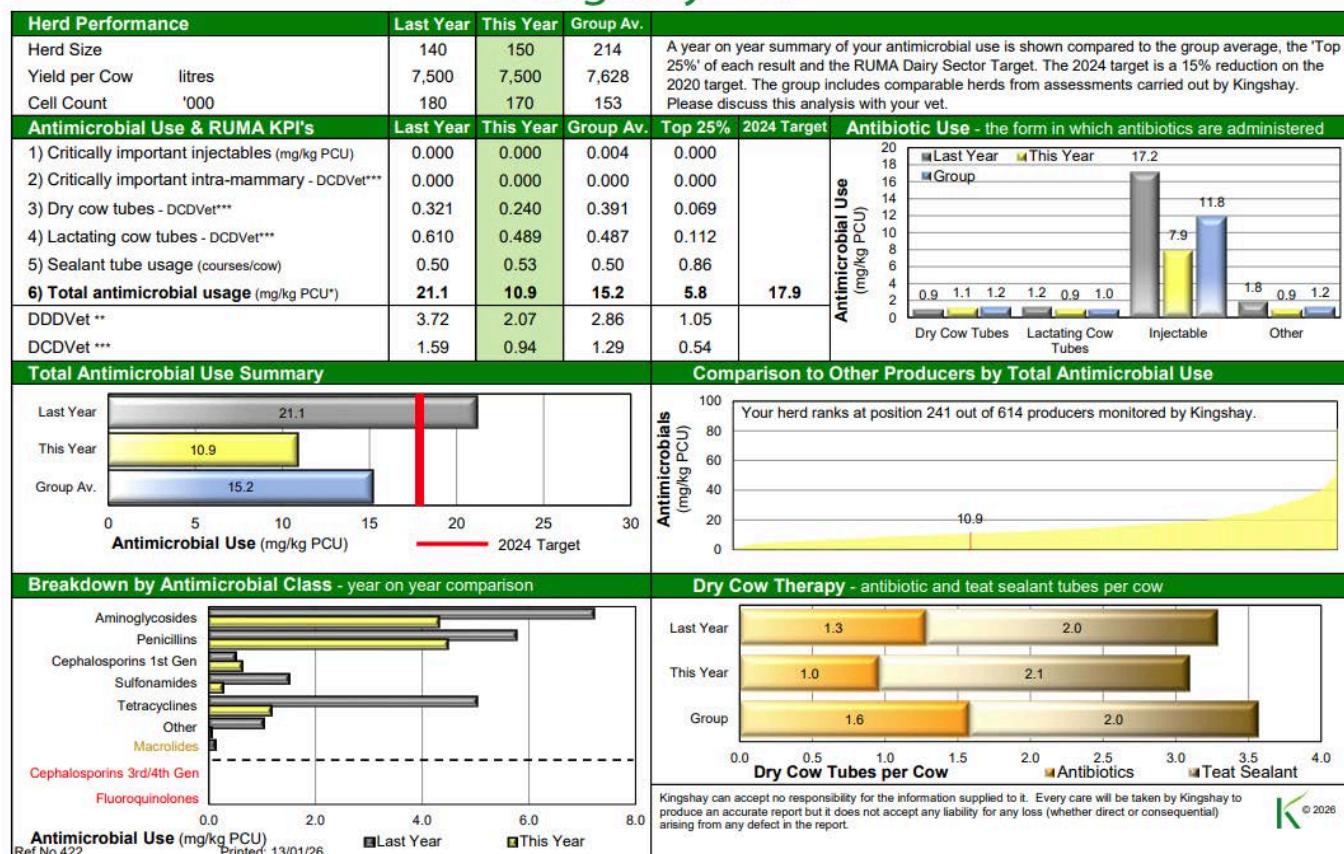
The North of England is once again the region with the highest average antimicrobial usage, and is one of the 3 out of 6 regions which has seen an increase since 2024 (see Figure 13).

Figure 13 - Total antimicrobial use by region (2025 vs 2024)

It is Scotland, however, that stands out for use of orally administered products (see Table 5), with a figure of 2.16mg/kg PCU, which is over double the national average of 1.05mg/kg PCU. Scotland is also notable for being the only region having herds using highest priority critically important antimicrobials (HP-CIAs) in intramammary products. The South/South East of England region has not only achieved the lowest overall antimicrobial use, but also is the only region to have zero herds using HP-CIAs either in injectable or intramammary products.

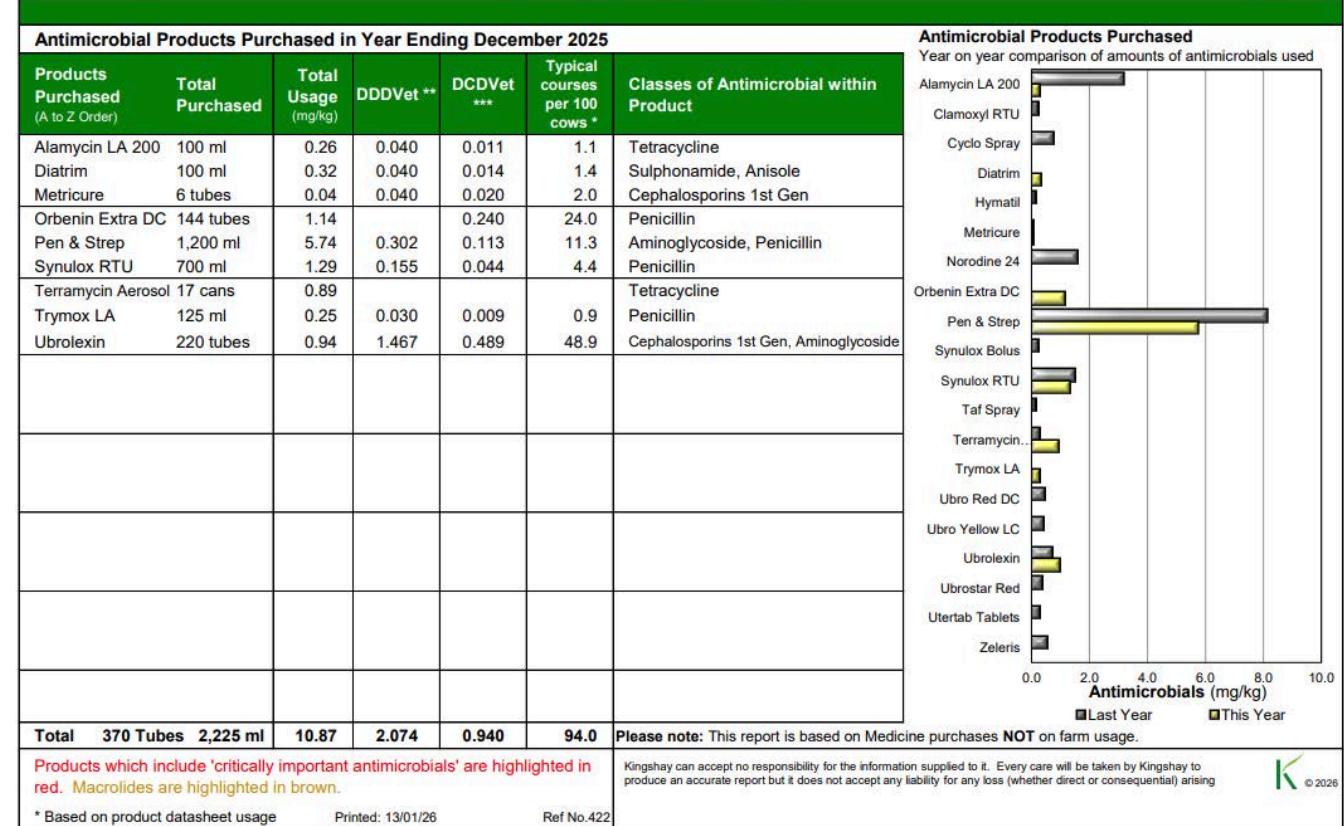
Antimicrobial Use by Region (March 2025 year end)	South West	South / South East	Midlands	North	Wales	Scotland
% of herds	30%	9%	8%	18%	17%	18%
Herd size	220	199	138	171	197	173
Yield per cow (litres)	7,181	7,066	6,386	7,110	6,378	7,053
Somatic cell count ('000)	166	178	182	161	158	167
1) HP-Critically important injectables (mg/kg PCU)	0.0001	0.0000	0.0041	0.0056	0.0112	0.0083
2) HP-Critically important intra-mammary (DCDVet)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010
3) Dry cow tubes (DCDVet)	0.381	0.445	0.466	0.531	0.399	0.444
4) Lactating cow tubes (DCDVet)	0.371	0.414	0.495	0.293	0.284	0.344
5) Orally administered products (mg/kg PCU)	0.49	0.47	0.08	1.27	1.41	2.16
6) Total antimicrobial usage (mg/kg PCU)	11.1	10.4	11.7	14.9	10.8	13.7

Table 5 - Antimicrobial use by region


APPENDIX

Examples shown below of the Dairy Antimicrobial Reports issued to farmers/vets for individual herds as part of the Antimicrobial Monitoring Service.

Name: Joe Brown
Vet: Tom Smith


DAIRY ANTIMICROBIAL REPORT December-25

Name: Joe Brown
Vet: Tom Smith

DAIRY ANTIMICROBIAL REPORT December-25

GLOSSARY

Term	Definition
Antibiotic	A medicine used to prevent and treat bacterial infections specifically. This report is primarily focused on the use of antibiotics, as a subset of wider antimicrobials.
Antimicrobial	A product which kills or slows the spread of a range of microorganisms, including bacteria, viruses, protozoans, and fungi. Antibiotics are antimicrobials.
Critically Important Antimicrobial (CIAs)	Identified by European Medicines Agency as being of most importance in human medicine (category B). CIAs consist of 3rd and 4th generation cephalosporins, fluoroquinolones and polymyxins.
DCDvet (Defined Course Dose)	The assumed average dose per kg animal per species per treatment.
DDDvet (Defined Daily Dose)	The assumed average dose per kg animal per species per day.
EMA	European Medicines Agency
mg/kg PCU (Population Corrected Unit)	Milligrams per kilogram PCU, the unit of measurement developed by the European Medicines Agency to monitor antibiotic use and sales across Europe, which has also been adopted by the UK in its national reports. Uses average weight at time of treatment (calculated as average weight over whole lifetime). Calculation assumes all beef animals are for slaughter.
RUMA (Responsible Use of Medicines in Agriculture Alliance)	Is a unique, independent non-profit group involving organisations that represent all stages of the food chain from 'farm to fork'. RUMA aims to produce a co-ordinated and integrated approach to best practice in animal medicine use. It has an established communications network with government departments and many non-governmental organisations.

ANTIMICROBIAL PROJECT TEAM

EMMA PUDDY

Farm Services Specialist

Emma has a love for spreadsheets and enjoys data interpretation. Joining the team in April 2024, she is responsible for constructing and delivering our industry reports.

MARY-KATE FOSTER

Senior Farm Services Specialist

Mary-Kate is responsible for the smooth running of the antimicrobial service for key corporate clients. She joined the team in 2021 and deals with any technical queries and customer support related tasks.

CHRISTINA BOOBYER

Product Owner

Christina joined Kingshay in 2019. Her main role is developing, testing and promoting the DigiFarm website & App for the vets, as well as managing the antimicrobial projects.

MICHAEL HEAD

Training Consultant

Michael Head (AKA Spike) delivers practical, engaging training with his strong dairy-focused clinical experience and a national reputation in farmer education. He joined the Kingshay team in April 2025 as a Training Consultant to help develop new and aspiring farmers.

MOLLY LEE

Farm Services Administrator

Molly has been part of the Kingshay team since 2023, and processed most of the antimicrobial data that we received from the veterinary practices for this report, in a wide variety of different formats.

If there are any points you would like to discuss from this report, or further in-depth analysis required, then give us a call on **01458 851555** or email us at **dairy.manager@kingshay.co.uk**.

Providing Evidence-Based Livestock Solutions

PUT OUR INDEPENDENT INFORMATION, SERVICES AND ADVICE TO WORK ON YOUR FARM TO BUILD A HEALTHIER, MORE PROFITABLE FUTURE.

Technical Knowledgebase

Our Dairy Insight users have a wealth of dairy industry knowledge at their fingertips, via the Kingshay App, the website and regular mailings. We also offer membership options for veterinary practices, farm advisers, colleges, universities and corporate bodies.

Dairy Manager

The UK's leading dairy costings service includes options for targeted reports, allowing you to create and monitor regular production forecasts, highlight key health issues, compare your herd to similar herds and calculate your bottom-line profit and antimicrobial use.

Consultancy

Our team of Agricultural Consultants and Associates bring their skills and expertise to your door wherever you farm in the UK. We offer traditional ongoing consultancy or one-off solutions, tailored specifically to you and your business.

Tools and Analysis

We provide the everyday analyses and tools every dairy farmer needs to maximise their resources, from soil analyses to plate meters.

Data Services

A growing part of Kingshay is developing bespoke tools and services to organisations across the agricultural industry. Our unique combination of farming expertise & technical IT skills enable us to provide an Online Portal, Phone Apps, Data Integration and Big Data Management.

Training

Online, Face to Face, Technical Speakers & Facilitation

We offer a wide range of training to suit all farm types and species, addressing all areas of the business, from animal health and welfare to recruitment and environmental management. The Kingshay team have extensive experience of delivering training to audiences across the UK.

For any further information on the above services, call our team on **01458 851555**.

Search 'Kingshay Farming'

Bridge Farm, West Bradley, Glastonbury, Somerset, BA6 8LU
T: 01458 851555 E: contact.us@kingshay.co.uk

WWW.KINGSHAY.COM

All rights reserved. All information provided by Kingshay in this report is copyright and is not to be reproduced, stored or transmitted in any form or distributed to other persons without written permission of Kingshay.
DISCLAIMER: Kingshay can take no responsibility for the consequences of actions carried out as a result of the information contained in this report.